
Poli 281 Spring 2019

Visualizing Data and Assessing Relationships
This exercise uses data on women’s hockey from Hockey Abstract collected by Rob Vollman
http://www.hockeyabstract.com/testimonials/womenshockeydata. The data have been lightly
cleaned by me. A summary of the variables in the data is available below.

Name Description
Season Year of season
League League
First.Name Player’s first name
Last.Name Player’s last name
Pos Player’s position
Team Player’s team
GP Games played
G Goals scored
A Assists
PTS Total points
PIM Penalty minutes
PM Plus/minus

This exercise is due on Sakai at the end of class today. Don’t worry if you don’t finish it; you’ll
receive full credit for submitting it, regardless of how far you make it. This is a group assignment,
so you may work with your neighbors.

Question 1
Load the data into R by using the read.csv() function. Remember, you can either change your
working directory to where the hockey.csv file is located with the setwd() function, or you can
write the full filepath to it in the read.csv() function. On my computer that looks like this:
setwd('~/Dropbox/UNC/Teaching/281 Spring 2019/In Class Materials/')
hockey <- read.csv('Data/hockey.csv')

Question 2
First off, let’s check to make sure there aren’t any glaring errors in our data. In hockey, players
receive one point each for both goals and assists. Check that every player’s point total is equal to
their goals plus assists. Remember that a conditional will evaluate to TRUE or FALSE and R treats
them as 1 and 0, so you can use either the mean() or min() functions to check for any incorrect
point totals.

Question 3
Subset the data to just the 2014 Olympics using the subset() function and assign the result to a
new object called oly2014. To do this, you want to get only rows where Season is equal to 2014 and

Last Updated: February 11, 2019 1

http://www.hockeyabstract.com/testimonials/womenshockeydata

Poli 281 Spring 2019

League is equal to Oly. Once you’ve done this, find the top goal scorer(s). You could accomplish
this with square bracket indexing by doing the following:
oly2014 <- hockey[hockey$Season == 2014 & hockey$League == 'Oly',]
oly2014[oly2014$G == max(oly2014$G),]

Question 4
Return to our main hockey object. A good way to visualize discrete data is a bar plot. Bar plots
are a natural fit when the different values in our data don’t have a natural ordering to them. Our
data contain information on players in the following leagues:

[1] "CIS" "CWHL" "EWHL" "NCAA-I" "NCAA-III" "NWHL"
[7] "Oly" "Russia" "SDHL" "WC"

There’s no inherent way to sort these leagues. You could try and rank them based on the overall
level of play (but that’s complicated and there are lots of ways you define it. . .), or the average
salary (but that doesn’t work for the World Championships or Olympics. . .), so instead we treat
them as categorical data. If you have to think about how to sort your data for more than five
seconds, they’re probably categorical. This is how to create a bar plot of average games played by
league, and what it looks like
games_mean <- tapply(X = hockey$GP, INDEX = hockey$League, FUN = mean)
barplot(height = games_mean, cex.names = .5)

CIS CWHL EWHL NCAA−I NCAA−III NWHL Oly Russia SDHL WC

0
5

10
15

20
25

30

Notice that I’m using the tapply() function here. tapply() take three arguments: 1. X – a vector
of numeric values we want to perform some mathetmatical operation on. 2. INDEX – a vector that
tells us how we want to split up X. You can think of this as an ID variable that tells R which group
each element of X belongs to. 3. FUN – the mathematical operation we want to perform on each
group of X

Using tapply() and barplot(), create a bar plot of average goals by league. Hint: the cex.names
= .5 argument above will make sure that all league names are drawn on the bottom of the plot. If

Last Updated: February 11, 2019 2

Poli 281 Spring 2019

you don’t use, some will be omitted because otherwise they would overlap.

Question 5
We can use tapply() to group by any variable we want. Create another bar plot of average goals,
but this time group the data by season instead.

Question 6
There’s a huge jump in average goals from 2000 to 2001, and then a giant dip from 2016 to 2017.
Maybe something interesting happened at these points like a rule change? If that were the case,
we’d expect everything else to stay pretty much the same. One obvious culprit here could be the
fact that number of goals scored is an increasing function of number of games played. Use tapply()
and barplot() to see the average games played in each year.

Question 7
One last question we should ask is do the 1998-2000 and 2017 seasons have fewer games in the data,
or do they have far more players playing fewer games each? Let’s create a histogram of the total
number of players in each season to compare to our previous histograms. Remember that tapply()
splits X into separate vectors, so use a function that will tell you how many elements are in a vector
for FUN.

Question 8
This is what a bar plot of average penalty minutes for each league looks like:

CIS CWHL EWHL NCAA−I NCAA−III NWHL Oly Russia SDHL WC

0
2

4
6

8
10

12
14

It looks like no players got any penalty minutes in Division I and III college hockey; that can’t be
right. Run this code to figure out what’s going on:

Last Updated: February 11, 2019 3

Poli 281 Spring 2019

We have missing data in our penalty minutes! Missing data occur when some of the data are,
unsurprisingly, missing. R uses the special value NA to represent missing data. It’s important to
note that an NA for an observation does not mean that it is zero. Instead, it just means that it’s not
in the data. There are many potential reasons for this, and we’ll talk more about them and how to
deal with missing data later in the course.

For now, we’re just going to tell R to ignore the missing data. We can do this with the na.rm = T
argument to the mean function.
mean(hockey$PIM)

[1] NA
mean(hockey$PIM, na.rm = T)

[1] 12.40496

If you type ?tapply you’ll see that there’s a fourth argument called ... we can use. The ...
argument allows you to pass optional arguments to FUN, so we can use it to sneak na.rm = T into
the evaluation of mean(). Note, however, that these optional arguments need their names and not
..., so add na.rm = T as the last argument in your call to taply()

Question 9
Now let’s move onto a continuous variable. While G is technically a count of goals, one skilled
player managed to score 59 goals in a single season, so we’re going to treat the goals variable as
continuous. Recall from last week that the standard deviation of a variable is root mean square of
its deviation from its average:

sd(x) =
√√√√ 1

n − 1

n∑
i=1

(xi − x̄)2

Use the sd() function to calculate the standard deviation of goals and games played.

Question 10
The standard deviation of the games played is way higher than goals scored (9.6594568 vs. 4.8936736).
Let’s figure out why using a histogram, which is a convenient way to plot continuous data. This
is what a histogram of plus-minus looks like (sidenote for non hockey fans: plus-minus is terrible
statistic that tells you very little about a player’s skill and you should avoid it all costs if you’re
making predictions for fantasy hockey):

A histogram puts all the elements of a variable in order, just like quantiles, splits them into equal-
width groups, or bins, and then counts up how many data points fall within each bin. The y axis on
a histogram tells you how much of your data falls within each bin. We can see here that most players
fall relatively close to zero, and about twice as many players have negative plus-minus ratings as
have positive ones.

Last Updated: February 11, 2019 4

Poli 281 Spring 2019

Use the hist() function to create histograms of goals scored and games played. What is the
relationship between the standard deviation of each variable and its histogram?

Question 11
Every plot we’ve made so far has been a univariate and every statistic we’ve calculated has been a
univariate statistic. This just means that each one only deals with one random variable. Let’s move
onto a bivariate relationship. Use the plot() function to plot games played on the x axis and
goals scored on the y axis. This is called a scatterplot. What relationship do you observe between
the two variables?

Bonus
The standard deviation is a numerical counterpart to the histogram. Do you know what the numerical
counterpart is to the scatterplot? If you don’t know it, take another look at section 6 of chapter 3 in
Imai because we’ll be talking about it in class on Thursday.

Last Updated: February 11, 2019 5

	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8
	Question 9
	Question 10
	Question 11
	Bonus

